Coordination of cell proliferation and anterior-posterior axis establishment in the mouse embryo.

نویسندگان

  • Daniel W Stuckey
  • Melanie Clements
  • Aida Di-Gregorio
  • Claire E Senner
  • Paul Le Tissier
  • Shankar Srinivas
  • Tristan A Rodriguez
چکیده

During development, the growth of the embryo must be coupled to its patterning to ensure correct and timely morphogenesis. In the mouse embryo, migration of the anterior visceral endoderm (AVE) to the prospective anterior establishes the anterior-posterior (A-P) axis. By analysing the distribution of cells in S phase, M phase and G2 from the time just prior to the migration of the AVE until 18 hours after its movement, we show that there is no evidence for differential proliferation along the A-P axis of the mouse embryo. Rather, we have identified that as AVE movements are being initiated, the epiblast proliferates at a much higher rate than the visceral endoderm. We show that these high levels of proliferation in the epiblast are dependent on Nodal signalling and are required for A-P establishment, as blocking cell division in the epiblast inhibits AVE migration. Interestingly, inhibition of migration by blocking proliferation can be rescued by Dkk1. This suggests that the high levels of epiblast proliferation function to move the prospective AVE away from signals that are inhibitory to its migration. The finding that initiation of AVE movements requires a certain level of proliferation in the epiblast provides a mechanism whereby A-P axis development is coordinated with embryonic growth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rac1-Dependent Collective Cell Migration Is Required for Specification of the Anterior-Posterior Body Axis of the Mouse

Cell migration and cell rearrangements are critical for establishment of the body plan of vertebrate embryos. The first step in organization of the body plan of the mouse embryo, specification of the anterior-posterior body axis, depends on migration of the anterior visceral endoderm from the distal tip of the embryo to a more proximal region overlying the future head. The anterior visceral end...

متن کامل

Initiation of Gastrulation in the Mouse Embryo Is Preceded by an Apparent Shift in the Orientation of the Anterior-Posterior Axis

BACKGROUND It is generally assumed that the migration of anterior visceral endoderm (AVE) cells from a distal to a proximal position at embryonic day (E)5.5 breaks the radial symmetry of the mouse embryo, marks anterior, and conditions the formation of the primitive streak on the opposite side at E6.5. Transverse sections of a gastrulating mouse embryo fit within the outline of an ellipse, with...

متن کامل

The Anterior-Posterior Axis Emerges Respecting the Morphology of the Mouse Embryo that Changes and Aligns with the Uterus before Gastrulation

BACKGROUND When the anterior-posterior axis of the mouse embryo becomes explicit at gastrulation, it is almost perpendicular to the long uterine axis. This led to the belief that the uterus could play a key role in positioning this future body axis. RESULTS Here, we demonstrate that when the anterior-posterior axis first emerges it does not respect the axes of the uterus but, rather, the morp...

متن کامل

Requirement for β-Catenin in Anterior-Posterior Axis Formation in Mice

The anterior-posterior axis of the mouse embryo is defined before formation of the primitive streak, and axis specification and subsequent anterior development involves signaling from both embryonic ectoderm and visceral endoderm. Tauhe Wnt signaling pathway is essential for various developmental processes, but a role in anterior-posterior axis formation in the mouse has not been previously est...

متن کامل

-Catenin in Anterior-Posterior Axis Formation in Mice

The anterior-posterior axis of the mouse embryo is defined before formation of the primitive streak, and axis specification and subsequent anterior development involves signaling from both embryonic ectoderm and visceral endoderm. T he Wnt signaling pathway is essential for various developmental processes, but a role in anterior-posterior axis formation in the mouse has not been previously esta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 138 8  شماره 

صفحات  -

تاریخ انتشار 2011